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A general role of the renormalization group (RG) in the theory of fully developed turbulence is pro-
posed, with the simple case of the shell models as an illustrative example. A Wilson-type RG is defined,
i.e., a transformation in a space of shell-dynamics “subgrid models” with fixed uv cutoff, for a class of
theories with fixed mean dissipation and strength of quadratic nonlinearity. It is explained that, if a
zero-viscosity limit exists, then its “subgrid” dynamics below the cutoff is necessarily (near) a fixed point
of the RG transformation. Conversely, any RG fixed-point subgrid model is associated to a zero-
viscosity limit. By means of an “asymptotic completeness” assumption for the fixed point, a high shell-
number expansion is established, analogous to the operator product expansion (OPE) of field theory.
This expansion predicts characteristic “multifractal scaling” for shell variable moments and also rela-
tions between inertial and dissipation range scaling exponents. Furthermore, under the plausible as-
sumption of an ‘“additive OPE,” a predicted scaling form for two-point moment correlations is estab-
lished. The results of this paper are nonperturbative but only of a qualitative character, based upon pre-
cise assumptions about the fixed-point theory. However, we also discuss the possibility of an implemen-
tation of RG by numerical methods (Monte Carlo, decimation, etc.) or perturbation expansion to test the
assumptions and to make a quantitative evaluation of the scaling exponents. The relation of RG to naive
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“cascade ansatz” is also discussed.

PACS number(s): 47.27.Ak, 64.60.Ak

I. INTRODUCTION

In many papers analogies between scaling in high-
Reynolds-number turbulence and equilibrium critical
phenomenon have been proposed [1], and attempts have
been made to apply the powerful renormalization-group
(RG) methods, which have proved so effective and il-
luminating in critical phenomenon, to turbulence scaling
[1-3]. However, to our knowledge, none of these works
has really provided a logic for such an application of RG
to turbulence, nor emphasized the proper goals of such
an RG study. We shall attempt here to supply the miss-
ing foundations of the RG method in turbulence. A brief
account of our approach has appeared in [4], but we
would like in this work to give a more detailed discussion
with an emphasis on basic principles. Particularly, we
would like to emphasize the relation of RG to simple di-
mensional analysis (DA) and to explain in what sense it
allows one to extend and improve the results of DA. In
general, going beyond DA requires certain properties of
the RG fixed point which, however, are often mild, plau-
sible, or expected to be generic. As illustrations of this
potential of RG, we derive some simple qualitative pre-
dictions of RG for model problems which cannot be ob-
tained from DA alone.

To prevent any confusion, let us state at the outset that
our approach is entirely distinct from the e-expansion
‘“renormalization-group” (RNG) theory of Yakhot and
Orszag [3]. Their approach is based on a set of approxi-
mations and implicit assumptions independent of stan-
dard renormalization-group methodology, and there is no
basis in a systematic RG theory for the claimed asymp-
totic validity of their results. We discuss the € expansion
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and some of its problems briefly in the last section of this
paper. Our analysis here is entirely nonperturbative,
based on a set of explicit assumptions which are stated as
clearly and precisely as possible. Subject to validity of
the assumptions, our results are exact.

For the most part in this work, we shall confine our at-
tention to so-called shell models of turbulence. These
were originally introduced as radically simplified models
of the Navier-Stokes equation by Gledzer [5] and
Desnyanski and Novikov [6]. Later, Siggia [7] (see also
Zimin [8]) gave a more careful qualitative “derivation” of
the shell-type models from the Navier-Stokes equation, in
the spirit of Wilson’s phase-space cell analysis leading to
the approximate recursion formula [9]. In agreement
with Siggia’s original arguments and despite the simplici-
ty of the dynamics, the shell models have been found by
direct numerical simulation to exhibit strong deviations
from the classical Kolmogorov scaling behavior predict-
ed by a dimensional analysis [10]. We discuss here pri-
marily the shell models because, as we emphasize, the ob-
vious application of RG is to a high-Reynolds-number
limiting behavior. Although high-Reynolds-number
flows abound in nature, there are great difficulties in
practice in making precision measurements of short-
distance statistics in the laboratory or in the field. With
the present experimental techniques, the use of incom-
pletely founded assumptions like the “Taylor frozen-
turbulence hypothesis,” with an unknown range of validi-
ty, are necessary to relate experimental measurements to
theoretical quantities. It is not clear that the experiments
are wholly reliable even for qualitative checks on theory.
On the other hand, direct numerical simulation of the
Navier-Stokes equation is without such ambiguities, but
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present computational resources limit us to the study of
rather low-Reynolds-number flows, say, Re~100. Such a
Reynolds number is too low to exhibit a meaningful scal-
ing range. The shell models, in contrast, because of the
radically reduced number of degrees of freedom, can be
simulated at extremely high effective Reynolds number
(e.g., Re~21%), exhibit wide scaling ranges, and are nev-
ertheless rich enough to exhibit deviations from
Kolmogorov’s mean-field predictions. The models are, in
fact, despite the simplifications, still formidably difficult
at the theoretical level and retain some of the chief
difficulties of the original problem: essential strong non-
linear coupling of modes and a high degree of statistical
disequilibrium. Although our discussion is mostly made
in the context of the shell models, most of it carries over
more or less directly to the realistic fluid equations. We
shall point out the general features in the detailed discus-
sion below.

The contents of this paper are as follows. In Sec. I we
define the shell models in a precise way and also describe
the steady-state statistical problem with external driving
forces. We consider the simplest model problem of a
Gaussian random force, white noise in time, which pro-
vides a fixed average rate of energy injection in low shells.
Afterwards we make a complete dimensional analysis for
this problem. In Sec. II we define the natural RG trans-
formation for this problem, which is completely deter-
mined by the requirements to keep fixed (1) the strength
of quadratic nonlinearity A=1 and (2) the mean value of
energy dissipation (more properly, energy injection rate)
€ As we explain, the fixed-point condition under this
RG is more or less equivalent to the existence of a well-
defined zero-viscosity limit. A qualitative picture of the
RG flow is sketched, based on physically reasonable
ideas, and it is emphasized that turbulence scaling arises
in an important way from its near-critical character.
Then some technical methodology of RG theory is intro-
duced: the notion of scaling variables and the relation of
linearized RG transformations to correlation functions at
the fixed point. In Sec. III we derive the qualitative pre-
dictions of RG theory for shell-model turbulence scaling:
in particular, “multifractal”-type scaling for shell vari-
able moments and asymptotic scaling laws for joint corre-
lations of shell moments. The basic assumptions made
are a “completeness” assumption for eigenvariables of
the RG map and an ‘additive-coupling” assumption
which is strongly motivated from the physics. The fun-
damental tool is a high-shell-number expansion, which is
derived from RG theory on the basis of the assumptions.
We also discuss relationships of RG with simpler “cas-
cade ansatz,” which are intuitive but ad hoc, that have
played a leading role previously in determining the form
of corrections to Kolmogorov scaling. Finally, in Sec.
IV, we briefly discuss the possibility of quantitative calcu-
lation of scaling exponents with RG methods, implement-
ed by numerical means, e.g., Kraichnan’s decimation
ideas [11], or perturbation expansion.

The background on RG theory required for this work
can be adequately provided by Wilson’s article [12] and
by Wegner’s very strong technical discussion in [13]. For
turbulence theorists, Wilson’s article is especially recom-

GREGORY L. EYINK 48

mended as a good conceptual introduction to
renormalization-group ideas and methods. (See particu-
larly his intuitive discussion in the Introduction of the re-
lation of RG to the “cascade picture” in critical phenom-
ena.) Another illuminating presentation of RG, em-
phasizing its generality and expressing a philosophy very
close to ours, is contained in the book of Goldenfeld [14].
One of the important general points for statistical
mechanics we would like to make in this work is the
broad applicability in principle of RG methods to none-
quilibrium problems with a wide range of excited scales.
Important features of RG theory of second-order phase
transitions are connected to the fact that the RG map
there acts in a space of local effective Hamiltonians.
However, RG theory is too often presented in a form
which is essentially tied to that framework, whereas the
basic concepts and methods actually apply in a much
more general context.

II. SHELL MODELS

A. Definition of the models

As we indicated in the Introduction, the shell models
were originally introduced as model problems with some
essential similarities to more realistic fluid equations
[5,6]. Later Siggia, in particular, made a more careful at-
tempt to justify these models [7]. In other words,
without any pretense of developing a quantitative ap-
proximation to the Navier-Stokes equation, Siggia argued
that the shell dynamics are nevertheless a good qualita-
tive model of high-Reynolds-number fluid behavior. In
particular, he argued that the local interactions (in wave
number, or scale)—which are the only interactions re-
tained in the shell dynamics—are the most essential set
of interactions both in transport of energy in scale and in
producing deviations from classical Kolmogorov scaling
for the Navier-Stokes equation [7]. (See also [15] on the
issue of local energy transfer.) The shell models have no
spatial degrees of freedom and correspond roughly to a
hierarchically arranged sequence of eddies in the original
problem, each eddy containing one or a fixed small num-
ber of eddies of size half as large. The important feature
is the nonproliferation of modes, each dyadic wave-
number shell 2"k, =<|k|<2"*"'k,, koy=1/L containing
the same fixed number of modes as n — «. In contrast,
in a true d-dimensional fluid problem the number of ed-
dies of size 27 "L increases as ~2%. Hence the shell
models are properly to be thought of as zero dimensional.
The essential mechanism of deviations from Kolmogorov
scaling in the shell models was suggested by Siggia to be a
buildup of (temporal) intermittency in the local cascade,
resulting in a ‘“bursting” behavior of energy flux. Siggia
indeed observed this behavior in his earliest simulations
[16]. This is in line with the original Landau argument
against Kolmogorov’s 1941 theory (K41) [17], that it
neglected the fluctuation in the dissipation rate (in that
sense, K41 is “mean field”). It is likely that the intermit-
tency at equal Reynolds numbers is more severe for the
shell variables than for corresponding quantities in the
Navier-Stokes case (like wavelet amplitudes), because
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there is no diffusive transport of energy in the shell model
“sideways in space,” i.e., to other eddies of the same
scale, which can act to smooth out the energy transfer in
the real fluids [18].

We do not here make any use of explicit forms of the
shell dynamics, but we do indicate the general form and
certain required properties for a qualitative approxima-
tion to the fluid equations. The basic structure of the
shell models is that they are a set of ordinary differential
equations (possibly infinite dimensional), quadratically
nonlinear and first order in time, for a set of ‘“shell-
variables” u,, where n is a discrete index running over
some interval of integers [M, N]. The variable u, may be
real or complex, with a possible finite degeneracy u,,,, in-
dexed by a: for simplicity, we discuss mostly the real,
nondegenerate case as an example. The variable u, is to
be thought of as a mode at “wave number” k,=2"k.
The general form of the dynamics is therefore

(B, vk u, ()= Aty (Du()+f, (1), (1)

m,l

with v a “viscosity.” In principle, other dissipative
mechanisms might be employed, e.g., a “hyperviscosity”
term nk,. The term f, is a driving force to produce a
dissipative steady state, which we discuss more below.
The nonlinear coupling 4,,,; should satisfy a number of
requirements. First, it should be “local,” i.e., be only
finite range or even nearest neighbor. Second,
Ay =k,R;_, n —,, to represent that the nonlinearity is
proportional to wave number. Also, it should exhibit
‘‘energy conservation,” i.e., the quantity

EN=13ul), )

should be a formal constant of the motion with v=0. A
sufficient condition for this is the ‘“detailed conservation

condition”
AnmI+Amln+Alnm =0, (3)

with the symmetry 4,,,=A4,,,. Furthermore, the dy-
namics should satisfy a ‘“Liouville theorem” when v=0,

o, =0 @)
% ou,

The latter two conditions guarantee that the Gaussian
“Gibbs distributions™

du[u]=% I1 du,exp

B3 u,%/z] (5)

will be stationary measures for the inviscid dynamics.
The above properties are easy to engineer.

Some other requirements are also important, although
it is not necessarily clear how to design models with the
requisite behavior a priori. For example, one wants the
model to have a good ergodic behavior, both for the
inviscid case and also for the driven, damped case. The
latter is clearly important from the point of view of the
Ruelle-Takens conception of turbulence, as being associ-
ated to a strange attractor for the dissipative dynamics
[19]. Furthermore, good ergodic properties for the free,

inviscid dynamics implies a tendency toward the energy
equipartition exhibited by the equilibrium measure in Eq.
(5). This has implications even for the driven, damped
case, since it indicates energy injected in the low shells,
for example, will have a tendency to flow out to higher
shells under the nonlinear dynamics. In conjunction with
this, it is reasonable to require that ‘“‘energy” E(t) as
defined in Eq. (2) should be the only extensive invariant
of the inviscid dynamics: otherwise, there shall be invari-
ant subsets of the energy shell, persisting in the large-N
limit, and additional “equilibrium measures” besides the
equipartition distribution Eq. (5) (however, this would be
a desirable property for shell models of two-dimensional
turbulence.) Although such properties are hard to build
in, there are some known cases which are numerically ob-
served to have such features. A currently popular
complex-variable version, the “Okhitani-Yamada mod-
el,” is an example [20-22].

B. Dissipative cascade states

To produce a steady-state problem, we use the com-
mon device of an external driving field f, which acts only
in some low shells, in a finite range around n=0, as a
source of energy. These forces might be deterministic or
random. Especially convenient is the choice of a Gauss-
ian force with zero mean and covariance

(fu®fm(t"))=F(k,)3, ,8(t—1") . (6)

If there is a steady state for this forcing, then it is a sim-
ple consequence of the Gaussian integration-by-parts
identity that the mean dissipation in that steady state,
i.e.,

e= 3> vkXu?), @)

n

must be related to the noise covariance as

=13 F(k,) (8)

(e.g., see Novikov [23]). This is an exact “energy-
balance” relation for the steady-state, expressing that the
mean rate of energy injection must be equal to the mean
rate of dissipation. The only way it might fail is if the
system is underdamped (too small viscosity for a given N)
and no steady state exists at all. However, one might
reasonably expect that the system is adequately damped
for any v>0 when N =+ . In that case, there are al-
ways sufficiently high shell numbers # such that vk? is as
large as desired, for any given v>0. This produces a cu-
rious circumstance that the result Eq. (8) should be valid
for arbitrary small v, and, since the right-hand side is in-
dependent of v, the limit as v—0 of the left-hand side is
strongly suggested to be the right-hand side, a finite, posi-
tive value. This might appear paradoxical, since the dy-
namics formally conserves energy for v=0. However, a
remark made originally by Onsager [24] (see also [15]) for
the true Navier-Stokes dynamics applies also here: the
inviscid dynamics, when N = + o, does not necessarily
conserve energy, even when ‘“‘detailed conservation” Eq.
(3) holds. Mathematically, the problem is that detailed
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conservation only implies overall conservation if the
infinite-series expression for dE /dt is unconditionally
convergent and may be arbitrarily reordered. That re-
quires that the series obey an absolute summability re-
quirement. It is easy to check, using 4,,,=0(2"), that
the series is indeed absolutely convergent when the shell
variables obey a growth condition

lu,|=0(27"h) 9

for A >1/3. (This is the exact analog for the shell vari-
ables of Onsager’s requirement of Holder index & > 1 for
the fluid velocities.) If A S%, then energy need not be
conserved. The physics of Onsager’s observation is that
energy may be lost in the infinite cascade to N =+ .

Indeed, most of the familiar shell models have an exact

stationary solution for the bi-infinite shell array,
M =— o ,N =+ «, of the form
u'(zO)Ecgl/fik’rl/?: , (10)

which has a constant flux of energy to (or from)
N =+ . It is therefore not dynamically incomprehensi-
ble that a dissipative zero-viscosity limit may exist yet be
governed by the inviscid shell-model equations.

C. Dimensional analysis

Our model is now completely defined. At this stage, it
is useful to consider a dimensional analysis to see what
are the permitted forms of various statistical averages
purely on those simple grounds. The dynamical equa-
tions contain three dimensional constants: k,, the wave-
number scale, which particularly for forcing just near
n=0 represents an inverse stirring length L ~; the (kine-
matic) viscosity v; and an overall normalization factor of
the noise strength F,, which has, by Eq. (8), the same di-
mensions as mean rate of dissipation of energy (per mass)
€. The latter quantities are essentially identified. In units
of length [L] and time [T] the above quantities have di-
mensions as [ko]=[L '], [v]=[L?*T"'], and
[€]=[L?T 3)]. The shell variables themselves are readily
determined to have the dimension of a velocity
[u,1= [LT!]. Let us consider the stationary statistical
state of the shell dynamics with M =0 and finite N. Then
for a typical average, like a shell variable moment {u}),
dimensional analysis requires a form
€

k,,L,kNL,———] , o an

q —=9/31,—q/3 4(q)
(uf)e, v =€k, 17 4 i
N

with 4'? an undetermined function. The dimensionless
combination g?>=&/v’k5 has a natural significance. If
one defines rescaled quantities with dimensions powers of
length only in such a way as to set v=1, €=1, i.e., t'=w1,
u,=v/&"u,, fi=(&v)"/2f,, then the nonlinear term
in the shell dynamics appears with a proportionality
€/v’. Hence g is a dimensionless measure of the effective
nonlinearity. (For this reason, it is sometimes defined as
g?=e€A\?/v*k}, where A is a formal nonlinearity strength
actually set A=1.)

The first Kolmogorov similarity hypothesis, in our
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context, is essentially that the limit of both L — + o0 and
N — + oo should exist for correlation functions, like sim-
ple moments. Then, DA yields

(ul), =€k, 1B E/Vky) . (12)

This is usually written with the dimensionless combina-
tion inside the scaling function taken to be k,7, where
n=1+%/4/€1/* is the “inner” or “dissipation” length scale.
The second similarity hypothesis was that the further
limit v—0 should exist. In that case, the expectations
{ug) will be functions in the inertial range of € only out
of all the dimensional constants as well as of k,, so that
DA gives then

(ul) =Ce?%k, 17, (13)

with C, dimensionless constants. We therefore some-
times refer to d, = —1 as the canonical dimension of u,,.
It is indeed the engineering dimension when u, is con-
verted to length units by € only: #,=u,/€'/3. Because
of Landau’s argument, it is dubious that Kolmogorov’s
assumption of a finite L — + co limit for correlations is
valid, but, as discussed above, the zero-viscosity limit is
on much better footing. A generalized form of the Kol-
mogorov similarity hypotheses, taking into account
Landau’s criticism, is still to assume existence of the lim-
its N— + o0 and subsequently v—0 but to allow for a
dependence also on stirring-length L, for which DA then
yields the result

_ - €
<u"l]>?,L,v=6q/3kn 13ED |k, L, e | (14)
v n
and in the inertial-range limit v—O0,
(uf),, =€k, 1°F'k,L), (15)

with E'?, F'? undetermined scaling forms.

III. THE RENORMALIZATION GROUP

A. The space of theories and definition
of the renormalization-group transformation

The Wilson-type RG transformation for our class of
problems can be defined as a map in a space of large-scale
effective dynamics or subgrid-scale eddy models. The idea
is that the ensemble of histories of the low-shell-number
modes below a uv cutoff N, generated by the full dynami-
cal problem with N =+ oo (or very large), may be taken
as the sample paths of an abstractly defined random pro-
cess of the low-shell variables. Even if the original shell
dynamics, as defined above, was of Langevin-type, the
low-shell effective dynamics need not be. In principle the
effective dynamics may be defined as follows: construct a
Feynman path-integral representation for the generating
functionals of the full process, corresponding to a
Martin-Siggia-Rose (MSR) field theory as in {25,26]. For
our shell-model case, this representation has the form
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Z[h,ﬁ]=f I1 du,(t)di, (t)exp [2 f+°°dt i, (t) [a,u,,+vk,3u,,— S A,,,,,,u,,,(t)u,(x)]
n,t n e m,l
—1F(k, )ﬁf,(t)+u,,(t)h,,(t)+ﬁ,,(t)ﬁ,,(t)’ ] , (16)

where Z [h,ﬁ ] is the generating functional whose func-
tional derivatives with respect to the sources h,(t) gen-
erate correlation functions of the u,(¢). [The derivatives
with respect to the sources il\,,(t) generate response func-
tions, but we do not need this for the present discussion.
Also, we may note that the Liouville theorem was used to
get rid of a Jacobian factor.] Then, simply integrating
out of the path integral the high-shell variables (n > N)
gives a path-integral representation (of highly complicat-
ed form) for the generating functional of the low-shell
process. If the original dynamics had a high-k, cutoff as
well (e.g., the shell dynamics is truncated at a k,, the
molecular scale), then there is no difficulty in principle in
defining the path integrals and performing (abstractly)
the elimination procedure. The path integral of the trun-
cated model is defined in terms of ordinary integrals if the
dynamics is discretized in time. To help regularize the
integrations one may add to every shell a weak Gaussian
white noise—which may be thought to represent molecu-
lar noise—and then, after final computation of averages,
set it equal to zero. [This is also the proper procedure to
select the physical Sinai-Bowen-Ruelle (SBR) measure on
the Ruelle-Takens attractor.] The practical computation-
al problem of performing the elimination averages will be
severe in the absence of a small expansion parameter.
Nevertheless, for the construction of the RG map the
above definition suffices. As always, the Wilson RG map
acts in a space of theories with fixed uv cutoff N. It is
convenient to take the lowest shell number to M = — c0:
the model may be then ir regularized in various ways,
e.g., by forcing only shell variables near n=0 and strong-
ly damping the modes for n <0. Also, it is often clarify-
ing (although a little pedantic) to use below the probabil-
ists’ notation of capitals U;,U,, ... to denote abstract
random variables and lower case u,u,,... to denote
values assumed, with some probability, in particular real-
izations of the ensemble. After eliminating the highest
variable Uy from the collection {...,Uy, ..., Uy} and
performing a set of suitable rescalings which, in particu-
lar, map U, _,—U,, one ends up with an effective dy-
namics of the variables {...,Uj},...,Uy}, again a
theory with uv cutoff N. The specific rescalings which
are performed depend upon the physics of the problem
under consideration. In our case, we want to understand
the high-k, scaling which is observed in the limit v—O0,
with fixed € and L (and, in particular, to establish the ex-
istence of such a state). Therefore, we naturally require
the RG to act in a space of theories with fixed €& Note
that we cannot require that L be fixed since the rescaling
required to bring the uv cutoff back to N necessarily
transforms L —L /2. Another natural requirement is
that A stay fixed (at 1): this corresponds to the imposition
of Galilei covariance for the real fluid case. There is a

simplifying feature of the RG for the shell dynamics
which is worth noting in this context. Because of the
strict locality of the shell dynamics, the elimination pro-
cedure only modifies the MSR Lagrangian in the finite in-
teraction range below N. Therefore, all of the complicat-
ed features of the subgrid model (non-Markovian
behavior, higher-order nonlinearity, etc.) pile up just
below the cutoff and the dynamics beyond a finite range
below the cutoff remains the original shell-model dynam-
ics. This allows us to prescribe in a completely unambi-
guous way the rescalings necessary to keep € and A fixed.
Indeed, consider the set of possible rescalings:

w1 =Ky, =277, up o (£)=2%u,(1) . 17)

Making the substitutions in the original (low-shell) dy-
namics, one finds easily that the rescaled equation is

B +vk2)ul () =221 A, ul (1))t +f1(2")

m,l

(18)

with v'=2?"2y and f,(¢')=221*f,(t). Hence A'=A=1
requires z =1-+x, while € =¢€, or fixed noise strength, re-
quires z +2x=0. [Observe that it is really the energy in-
jection rate, given by Eq. (8), which is being held fixed.]
Therefore, we see that we are forced by our prescriptions
to take x =—1 and z =Z%. It is worth noting that x ap-
pears as a scaling dimension of the shell variables and
that —1 is the canonical dimension as discussed above.

Although the above RG procedure is essentially
dynamical, it immediately yields a corresponding ‘‘static”
RG by specializing to only single-time distributions of
the shell variables. The RG map of low-shell probability
distribution  functions (PDF’s) is defined by
Py} —P{y;=Py;. We shall actually discuss mostly
throughout this paper just this resulting static RG. The
dynamic RG contains further interesting physical infor-
mation, but the essential qualitative features of the RG
flow behavior should be identical—in the shell-model
case—for dynamics as for statics. Therefore, we restrict
ourselves to statics for simplicity.

B. Eddy viscosity
and the meaning of renormalization-group invariance

The resulting rescaling of the viscosity is as v/ =243y,

Observe that under successive rescalings the viscosity in
the shells far below N goes rapidly to zero: after k rescal-
ings v—27*/3y. However, this is not the case for the
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shells in the interaction range just below the cutoff N.
The elimination step will produce new contributions to
the effective viscosity of those cutoff scale modes result-
ing from the average energy drain of the eliminated shell
degrees of freedom just above it. This is the so-called
“eddy viscosity” (which, in the shell model, has the pecu-
liarity to be a strictly cutoff scale effect, through lack of
nonlocal shell interactions.) Let the total effective viscos-
ity at the cutoff scale after k elimination steps (before any
rescalings) be vV % (It corresponds to a cutoff shell
number N —k.) Then the RG-transformed viscosity (res-
caled effective  viscosity after &k  steps) is
VN =274/3,(N=K) " L et us note the following obvious
but very important conclusion: a fixed point dynamics
can exist under the RG with fixed € and A, and in partic-
ular, a fixed point effective viscosity v\, if and only if
vM~g1/3k 43, The importance of this conclusion is
seen particularly by considering its equivalent for the
realistic fluid model: a fixed-point state invariant under
Euler dynamics with a finite mean dissipation € must
have an effective viscosity at a momentum scale k of the
form v(k)~€!*k %3, The same conclusion can be
reached in another way, by considering the requirement
that the dimensionless coupling g =(&/v’ky)!/? should
approach a fixed point under successive RG transforma-
tions, g —g,. Clearly, v\N'=(g/g%)3ky*".

The criterion for a fixed point (FP) requires some care
in its definition, since, as long as L0, «, a strict FP
cannot exist, for L is halved under iteration. Here we
take as the “approximation fixed-point condition” the
following: let Py __,UN(ul, ..., uy;&L /2) be the joint
PDF of the shell variables Uy, ..., Uy in the state with

stirring length L /2 (with uv cutoff N, as always) and

P, U (uy,...,uy;€L) be the joint PDF of the RG-
172 UN

transformed variables U, ..., Uy in the state with stir-
ring length L. (These PDF’s are the stationary distribu-
tions of the corresponding effective dynamics.) Then we
require as the FP condition that

J

PUI,A..,UN(ul""

Now, it can be verified at once from this form that

Jun;&L)=(EL) " N3 f(u, /(eL)'3, ..
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PU;,...,UI'V(ul’ s ’uN;E,L)

=Py, u (U uy;§L/2) .

(19)

This exactly corresponds to the “approximate FP condi-
tion” proposed by Wilson in numerical study of finite-size
critical systems [27]. We could just as well put here
PDF’s for the full set of shell variables ranging to
M = — «. However, it is actually the L — oo limit of the
PDF (assumed to exist) which is the fixed point of the
RG, so that the variables for k, <L ~1 are not really of
concern. This has an exact analog in the theory of criti-
cal phenomena, where the FP theory is necessarily a criti-
cal theory, i.e., the correlation length £*=+ w. The
reasoning in that context is exactly the same, since § is
halved in each RG step and the only fixed points of
E'=E£/2 are E*=+ o (or £*=0, which is generally not
realized.) We would like to emphasize that the existence
of the L — + o limit, or “Kolmogorov fixed point,” for
effective PDF’s or subgrid dynamics is one of the funda-
mental assumptions of our approach. As we shall discuss
below, the L — + o limit in turbulence is likely to be
rather singular, and while it may reasonably be expected
to exist at the level of PDF’s, the resulting distributions
are probably momentless, i.e., with extremely long tails
that lead to infinite moments of all orders. Furthermore,
real turbulent systems are never precisely at the fixed
point, and this leads to some characteristic features of
turbulence scaling.

A point which does not seem to be appreciated in the
literature is that the RG fixed-point condition is nothing
but a formal restatement of the fact that the theory is in-
dependent of the molecular viscosity (however, see [1],
Sec. II). It follows indeed directly by dimensional
analysis from that assumption. In fact, under the condi-
tion that the PDF is a function only of € and L, it has the
following form by DA:

S uy /(€LY k\L, ... kyL) . (20)

Py ot s un&L=2YPy g (2P, 2 P L)
=2V L) NP2V 3u /(D)3 L2 Py /(L) koL, . .. ky L)
L —N/3 173 L 1/3 L L
= &5 f ux/ & ,-~-,u1v/ ?? ;k1?,---’kzv7
=Py ... u (U1 Uy EL/2) 21

In particular, any zero-viscosity limit, if it exists, has au-
tomatically distributions of the subgridscale shell vari-
ables which are (near) an RG fixed point. This is the ex-
act counterpart of the situation in field theory where the
renormalization-group invariance is just a restatement of
the fact that the theory is independent of the uv cutoff,
e.g., a lattice size. [The terms “RG equation” or “RG in-

[

variance condition” are really more appropriate for our
Eq. (19), and the term ““fixed-point condition” should be
reserved for the limiting case L — + o.] The triviality
of the deduction should be appreciated. It may not be
obvious why this formal restatement of the independence
should even be useful. One answer to this is that there is
a converse statement to the above which is rather less
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trivial: namely if there is a fixed point in the space of
theories with fixed cutoff N, then it follows that a contin-
uum (N = + o) zero-viscosity limit may be constructed
with high-k, behavior determined by this fixed point.
For the RG considered above this fixed point will be
governed by the A=1 shell dynamics and have the fixed
mean dissipation €>0. The procedure for this construc-
tion is described by Wilson at length in Sec. 12.2 of [28],
and we shall discuss it more briefly just below. Here we
shall simply assume the existence of the zero-viscosity
limit for PDF’s, as a second fundamental assumption of
our approach. Aside from the more foundational issue of
existence of the limit, there are also practical advantages
to the RG statement of viscosity independence. As we
shall discuss in detail in the following, some modest as-
sumptions on the fixed point allow one to supercede di-
mensional analysis and derive qualitative results which
cannot be derived by DA alone. Furthermore, the RG
technology can also be applied to yield calculational stra-
tegies for deriving quantitative results on the predicted
scaling behavior, e.g., anomalous exponents.

C. Renormalization-group flow,
physical scaling regimes, and renormalization

It is perhaps helpful at this point to give a more pic-
toral description of the RG flow and its relation to physi-
cal cascade states of the shell model. A hypothetical
rendering of the RG flow is indicated in Fig. 1. The dot-
ted line indicates a particular RG flow trajectory. Fol-
lowing the RG flow corresponds to progressing up in
scale through a turbulent cascade state, passing through
effective theories for k, scales going from higher to lower
values (although each is rescaled back to fixed cutoff ky ).
The lines with given ““integral” or “outer” scale L are in-
dicated. Note that L decreases by factors of 1 in each
RG iteration. Furthermore, a fixed point, labeled F, is in-
dicated on the “‘critical line” L =+ 0. Consider a cas-
cade state at an extremely high Reynolds number. For
k, much larger than the Kolomogorov scale
k,=€!/4 7374 the effective viscosity v\ is still essential-

FIG. 1. Renormalization-group trajectory.
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ly the same as the original (bare) viscosity. (If there is
another dissipation mechanism, such as a hyperviscosity,
then a different criterion than k, >>k, will apply, but
there will still be a regime in which the dissipation is
dominated by the ‘“‘bare” mechanism rather than the
eddy viscosity.) This is the so-called “dissipation range”
and corresponds to effective theories with large L but still
far from the fixed point F. Now, as one moves up in scale
the eddy viscosity begins to increase, from the effect of all
the eliminated degrees of freedom, and the fixed point is
gradually approached. The range of scales for which the
RG phase point is near the fixed point is characterized by
the scaling behavior associated to that fixed point and
represents the so-called “inertial (sub)range.” If L was
sufficiently large at the outset (the Reynolds number was
sufficiently high), then the RG phase point will spend a
very long “time” in the vicinity of the fixed point. How-
ever, eventually L will begin to become small under RG
iteration and the phase point will leave the neighborhood
of the fixed point. Then one has entered the “inertial su-
perrange” or “‘energy range,” in which, in fact, most of
the energy of the state is contained. This part of the RG
flow is, of course, highly nonuniversal if the usual ideas of
a local cascade —with statistically independent successive
steps, leading to loss of large-scale information—are
correct. In that case there will be very many small-k,
states, corresponding to different stirring or generation
mechanisms, which have the same high-k, statistics,
determined by the same RG fixed point. In this regard,
Fig. 1 does not qualitatively well represent the RG flow:
in fact, there should be an infinite-dimensional space of
theories and an infinite number of RG trajectories run-
ning out of the fixed point to different small-k, behavior.
This is roughly represented in Fig. 2. In the language of
RG theory, the different flowlines leaving the fixed point
are referred to as relevant directions, and we see that the
fixed point corresponding to the high-Reynolds-number
scaling behavior should have infinitely many such ir un-
stable directions.

Let us note here briefly that each of the RG trajec-
tories emanating from the fixed point (relevant directions)
corresponds to a possible zero-viscosity limiting theory.
The different theories corresponding to different trajec-

FIG. 2. Schematic representation of the RG flow.
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tories have different large-scale behavior but the same uv
scaling behavior determined by the fixed point. These are
continuum theories, i.e., no uv cutoff, so it is meaningful
in principle to talk about high-k, scaling. The method of
constructing the theories is discussed at length by Wilson
and Kogut in Sec. 12.2 of [28]: the argument uses certain
scaling relations near the fixed point, which we shall dis-
cuss further below. However, graphically it is easy to see
how a sequence of cutoff theories, with cutoff ky, may be
selected so that as N— + o, the RG trajectory of the
cutoff theory converges to the ir unstable trajectory out
of the fixed point. In Fig. 3 we indicate such a sequence,
and the convergence to the trajectory of the relevant
direction (only one is indicated) is obvious from the to-
pology of the RG flow. In fact, with (infinitely) many
relevant directions there will be a multitude of possible
“renormalization procedures” producing different limit-
ing theories, and the selection of any one such theory will
require the careful fine tuning of a large (infinite) number
of parameters in the “bare sequence.” We will say no
more here about these issues.

For now, we introduce a little more of the technical
RG apparatus that we need to derive some of the prom-
ised qualitative predictions. The main concepts we want
to introduce are those of scaling variables and associated
scaling dimensions; also, the idea of the linearized RG
map and, particularly, its relation with the correlation
functions at the fixed point. The concept of scaling vari-
ables (and associated ‘“scaling fields””) was originally
developed in order to discuss near-critical scaling in equi-
librium phase transitions (see Wegner [29]). That is, it
was introduced to allow description of effects due to a
finite correlation length &, and it generalized naturally
Wilson’s idea of “eigenoperators” of the linearized map
at the fixed point. As we have already emphasized, the
near criticality of turbulence scaling is quite fundamental,
so these concepts are naturally required in our context.
The following material is at times rather technical, so
those with previous unfamiliarity may wish to read the
rest of this section rather quickly, for the basic idea, and
return for a closer study after seeing the specific applica-
tions in the following section.
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FIG. 3. A renormalization sequence.
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D. Renormalization-group analysis
of general perturbations

Let us first discuss the topic of renormalization group
extended to general random variables (or ‘“‘composite
operators”) of the system. To begin, it is useful to note a
reformulation of the RG map Py} —P{y; of effective
distributions in terms of the generating functionals

W[h]=<exp iy U,h, ]> , (22)

where { ) denotes expectation with respect to the distri-
bution Py, of the stochastic variables U for the effective
theory. Define “transformed sources™ as

}2—1/3;1,,“, n<N-—1

h=lo, n=n.

M (23)
Then, if W’[h] is the generating functional of the one-
step RG-transformed distribution, it follows from the
definitions that W'[R]=W/[h'] since I ,h,U,
=3, h,U,. If one has a variable S [U], which is some
functional of the shell variables {U,: n €[ — «,N]}, then
one can write down a generating functional including the
variable S as a supplemental (nonautonomous) variable,
formally as

Wh,k]=exp (kS Wih], (24)

i8h

where « is the source variable corresponding to S[u].
Equivalently,

W[h,K}=<exp [i > U,h, +xS[U] ]> . (25)

Likewise, the joint generating functional of a collection of
such variables {S,} may be defined as

W[h,x]=<exp iZUnhn+zKaSa[U]]>. 26)

n a
Let us write for the single variable case
Wh,S1=W/[h,1]=(exp(i 3, U,h,+S[U])). We are

assuming in our discussion that the S, ’s (and therefore
the sources k,, too) are dimensionless.

The definition of the “renormalization-group map” R:
S — S’ uses the intuitive idea that any real-valued S[u]
may be considered as a “perturbation” of the effective
distribution Pl U by taking

W h]1=W|h,k] 27

as the definition of a generating functional for a new dis-
tribution Pfy,. (Write P?Ui for k=1.) This is well-
defined subject to an integrability condition on
exp[«S[U]]. Notice, however, that this perturbed distri-
bution is in general unnormalized, i.e., it is not a proba-
bility measure. The normalization factor is just
1/W[0,k]. For this perturbation the RG-transformed
distribution, i.e., the distribution of the RG-transformed
variables U’ wunder the perturbed distribution,
(PfU] )'EP‘fU,], defines an “RG-transformed variable”
S’[ U], which is the logarithm of the density of that mea-
sures with respect to P{y;. In other words,
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W(h',S]=W'[hR{S]] (28)

or
<exp [l% U,,h,:"‘S[U]})
=<exp i S Uuh, 0] ]> . @9

Notice that the transformed perturbed distribution is
compared to what would have been the transformed dis-
tribution in the absence of the perturbation. It is worth
emphasizing here that the only requirement for defining
the map R is the rather weak one of existence of densi-
ties. Even in the case where the measure on phase space
has fractal support, as in the Ruelle-Takens scenario, the
physical or SBR measure on the attractor is smooth
along unstable manifolds [30]. This should be enough to
guarantee smoothness of the reduced distributions, which
is all that RG deals with. A direct consequence of the
definition is the equation

Ww[0,8]=W'[0,R{S}], (30)

which can be interpreted to say that S and R{S} have
identical normalization factors considered as perturba-
tions of Py, and Py, respectively.

The whole subject is based on making a useful inter-
play between the different interpretations of the two sides
of Eq. (27), the left as the generating functional of a “per-
turbed” distribution and the right as a joint generating
function for the primitive variables U and the dependent
variable S[U]. Because R is a nonlinear map,
R{kS}(U)=S'(U;k) will ordinarily be a nonlinear func-
tion of the sources. It may be evaluated as a power series
in k by expanding both sides of Eq. (29) (with S —«S) in
the source « and equating terms of like order. However,
because S'(U;0)=0 by its definition, the first nonvanish-
ing term in this expansion must be at least linear in «,

S'[U;k]=kT{S}U)+O0(x?) , 31)

where T: S[U]—S'[U] is easily checked to be a linear
map. This map depends, of course, upon the starting
effective distribution Py, in the above discussion
(it is just the tangent or differential map to J? at that
point.) Because of the equation Eq. (31),
(exp[i 3, U,h,+S'[U;k]])" may still be usefully re-
garded as a joint generating functional for arbitrary
correlations of the U’s and at most one insertion of S’'[ U]
in the state P{y,. If there is a subspace of variables in-
variant under 7, which is spanned by an independent set
{S,: a€J}, then we may introduce a matrix of 7 in
that subspace, as

T(S,)= 3 TopSs - (32)
BEJ

For the joint generating function of the variables {S,:

a € J} it follows from Egs. (28) and (31) that to linear or-
der in each of the sources «,,

Wih',k]=W'[hx'], (33)

where

kg= 3 K,Tpop (34)
a€d
is the linearized RG map of the sources. The functional
W'[ h,«'] may be legitimately used to generate correlation
functions for P{y; with at most one insertion of each of
the variables S, [ U], by differentiating with respect to the
original «’s.

E. Linearized transformations and scaling variables

In the case where the starting distribution was a fixed
point P{y;, the map T* is called the linearized
renormalization-group map at the fixed point. It is a fun-
damental assumption of most RG applications, which
must be verified in each particular case, that near each
fixed point there is a complete set of variables {Og:
BE J} (within some class) which are eigenvectors of the
linear map, i.e.,

T,{0,}=2 "0, . (35)

This property is sometimes referred to as asymptotic com-
pleteness, since it is supposed to be true as the RG phase
point approaches sufficiently close to the fixed point. The
eigenvalue exponent x, is the so-called (Wilson) scaling
dimension of the variable O,. The origin of the term
“scaling dimension” will appear just below. When con-
sidered as perturbations of the fixed-point distribution,
the variables with x,>0 are decaying under the RG
iteration and are termed irrelevant, while the variables
with x, <0 are growing perturbations and are termed
relevant. The variables with x, =0 are a special class,
termed marginal. It should be mentioned that it is gen-
erally the codimension in space, y,=d —x,, which
would appear in Eq. (35), but in the shell-model case
Yo = — X4, since d=0. Whereas it is usually the inequali-
ty x, <d, which is the condition for relevancy, for the
shell-model existence of classes of relevant variables is
equivalent to appearance of negative scaling dimensions.
This is a rather unusual phenomenon for d> 0.

Many common variables are local functions of the shell
variables in the vicinity of some shell number n, which we
may denote S (k,)[U]. Because of the rescaling involved
in the definition of 2, no such variable can be a scaling
operator in the strict sense. In fact, under the linear map
T, one such variable is transformed to another variable
of that type but with a wave number twice as large:
T,{S(k,)}=S'(k,,;). It is therefore convenient to
define a matrix of 7, in that subspace as

_ aK'B(kn+l)

a,m;B,n " aKa(k,, ) ’ (36)

where the «’s are appropriate sources and the eigenstates
of this matrix are scaling operators in a generalized sense
that

T {04k} =220, (k,,,) . 37)

Using the fixed point condition and the definition of the
scaling operators, it is straightforward to derive the fol-
lowing type of scaling law at the fixed point:
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(Oal(kn ERE

1

O, (ky ),
P P

—(xg + - tx, )
? {0, (2k, ) -0, (2k, )), .
1 1 14 p

(38)

This is obtained directly by differentiating both sides of
the identity W*[0,x]=W™*[0,«'] once with respect to
each of the sources x4 (k, ), ... ,Kap(knp ). This kind of
relation has direct phenomenological significance, as well
as being theoretically important for the problem of “re-
normalization” or “statistical continuum limit.” It
justifies the importance of the notion of scaling variables.
There is a simple relation of the linearized RG map
with the correlation functions for the fixed point, which
is often exploited in numerical RG works [31]. Suppose
{Sg: BEJ} spans an invariant subspace under 7, as be-
fore. The observation required for establishing the rela-
tion is that, for calculating the expectation of the variable
S,[U’] in the original distribution, either the latter or the
one-step RG-transformed distribution may be used.
J
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Thus
{0 3500,

:m<sa[u]exp | S wSslv] }) . (39)

Now, by taking the derivative of both sides with respect
to kg at k=0, and noting Eq. (34), it follows that

(S,[U"1Sp[UD) = {5, [U']) (Sl UD),

= 3 (S,[UIS,[UD),—(S,[UD, (S,[UDT, ;.
Y

(40)

Therefore, by calculating the indicated correlation func-
tions in the fixed-point distribution P’["U}, and inverting,
one can obtain the linearized RG map (at least in the sub-
space spanned by {Sg: BE J}). The matrix T, ,,.5, may
be calculated by the relation generalizing Eq. (40):

(Sa(kn +1)[U’]Sﬁ(km )[U])*_(Sa(kn +1)[U’])* <S[)’(km )[U]>*
= 2 (<Sa(kn+l)[ U]Sy(kp+1)[U]>*_<Sa(kn+l)[U]* <S1/(kp+1)[U]>*)Ty,p;B,m . 41
7P

We require for our discussion yet one further generali-
zation of the previous concepts, due to Wegner [29], the
idea of scaling fields away from the critical point. This
~ concept was originally developed in order to discuss
corrections to scaling behavior close to, but slightly away
from, the critical point in equilibrium phase transitions.
The idea there was to devise an appropriate generaliza-
tion of Wilson’s “eigenoperators” for systems slightly off
the critical point. The appropriate generalization was
constructed perturbatively in the couplings {g,: a€ J},
which measured the distance away from the fixed point,
and had the form of variables O,(k,;{g}) with explicit
nonlinear dependence upon the variables {g}. The
defining property (to linear order in «’s but nonlinear in
g’s) was that

J

[
R lEKioai(k"i; {g})

x

=S k2 0, (ky1 (27N HOUD),  @42)

with  {277g}={(2 x"ga: a€J}. The variables
O,(k,;{g}) are the so-called “scaling variables” near the
critical point and the associated sources «,(k,;{g}) the
“scaling fields” (defined above to linear order). In our de-
velopment below, we shall assume the existence of such
scaling variables. Working through the definitions, one
can check that the O,(k,;{g}) are specified to linear or-
der as the eigenstates of a matrix T, .5 ,({g}), which is
obtained from correlation functions as

(Salky LU 1S5k )LUD 1g) = (Sl + DU 11 {Splhep LUD 4
= 2 {(Sa(kn+1)[U]Sy(kp+1)[ U]>{2_Xg}_<sa(kn+l)[U])Iz_xg}<sy(kp+l)[U]>{2*"g}}T’}/,p;ﬁ,m({g}) .
v»P

(43)

Furthermore, one has a generalized form of the scaling relations, which states that

(x + - +x

*

(Oal(knl’{g}) T Oap(knp’{g})>[8]:2

Because we generally discuss just a single RG trajectory
which corresponds to a specified state with a fixed pro-
duction mechanism and dissipative cutoff, which unique-
ly selects the starting PDF for the RG iteration, it is gen-

o)
P (00, 2k, (2778)) 1 O (2K, (278 ))

(2 %) “4

[
erally unimportant for us to indicate the dependence of
the full set of couplings {g}. (Specifying all of these
would fix the particular RG trajectory in occurrence out
of the set of all possible ones near the fixed point.) In-
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stead we can indicate the distance from the fixed point by
the single parameter k,=L ~!, which is doubled in each
RG step. Therefore, our scaling variables are denoted as
O, ({ky}), or O,(k,,{ky}) in the case of a variable local-
ly supported near k,. Sometimes it useful to explicitly in-
dicate also the uv cutoff ky, by a superscript, e.g.,
OM({ky}). This is particularly helpful when consider-
ing the ky — =+ o or “continuum” limit.

IV. OPERATOR PRODUCT EXPANSION

A. Canonical scaling of shell polynomials

We now fulfill our promise to derive some general qual-
itative predictions of the RG methods developed above.
Our first result will be a simple application of the theory
of the preceding section. We consider local polynomials
of the shell variables and momentum of the form

IUI=ksuloult - ooulr . (45)

n—r

Notice these are defined so that k, is the momentum of
the highest shell variable in the polynomial. The canoni-
cal dimension of this quantity is

—t3n (46)

in the units determined by € What we show now is that
the local polynomials with n <N are scaling variables
with Wilson scaling dimension equal to the canonical di-
mension x, =d,. (We should actually deal with variables
nondimensionalized in terms of € and kj, the fixed pa-
rameters of our RG, but for simplicity we neglect this
here.) In other words, there is no “anomalous part” to
the scaling dimension. At first sight, this might seem
surprising, since it is numerically observed that such vari-
ables, e.g., simple moments, show anomalous “multifrac-
tal” scaling, i.e., {u?)~k, % for k,—+ o, and §, is not
the canonical or Kolmogorov scahng d1mens1on [21,22].
This might seem to indicate that the u? have anomalous

dimensions, since a general scaling operator O (k,)
with scaling dimension x , obeys the relation
xlI
(0,(k,))~ (47)
kN

for k, <<ky at the fixed point. This is a direct conse-
quence of the scaling law. In the continuum or N — +
limit, this goes over into a critical scaling law of the form

([0ak) ) ~Kp" (48)
where [O,(k, )]=k;”‘0§,N)(kn) is a renormalized variable
in the continuum theory (with finite expectations for
N — + « and dimension x, in units of inverse length).
This might be thought to be the appropriate model of the
observed anomalous scaling, but our result proved below
shows that this is definitely not the correct interpretation.

The proof of the result is very simple and depends
upon the observation that

Pk, ) U'1=2"P(k,)[U] 49)
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for n <N. This follows directly from the simple structure
of our RG for the model, and really makes the result al-
most obvious. However, we can formally demonstrate
the result by observing that

(P(ky 4 )[U' 1Pk U,
:<Pa(kn+1)[U]PB(km+1)[U])~L/2 (50)

We have not used any scaling relation here, but just the
definition of the RG transformation. Now, using the Eq.
(49) only for the polynomial Pg, it follows that

<Pa(kn+l)[U’]PB(km )[U] >?,L
= (P (ky 1 DIUIPs(Ky s LU, ,2 P (5D)

By the same method of argument applied to one-point ex-
pectations, it follows further that

(Polk, s U,  (Pglk,, [UD,,

:<Pa(kn+1 [U]>—L/2(Pﬁ(km+l) U]>—L/2 dB
(52)

Taking the difference of Egs. (51) and (52) and comparing
with Eq. (43), one concludes immediately that in this
class of operators

—d
27 P8, Sy » (53)

and from the definitions

T(ko){Py(k,)} =2 “*P(k, ) . (54)

T, ,.pm(ko)=

This is the claimed result. Notice here that it is crucial
that n <N. In the case n =N the basic relation Eq. (49)
fails and such an operator could indeed have an anoma-
lous dimension.

B. A high shell-number expansion
and moment scaling laws

In view of this result we must search for an alternative
explanation of the observed scaling. In fact, we show
that this can be simply understood as the consequence of
the near criticality of the cascade and the hypothesis of
asymptotic completeness. The technical tool we need is a
high-shell-number expansion analogous to the operator
product expansion of field theory. Specializing for sim-
plicity to the shell variable powers, this result says that
the powers have the following asymptotic expansion:

uf~e"k, P 3 cq ky “[0a({ko})], (55)

for k,>>k,=L ! in a weak sense (i.e., in correlation
functions of shell variables with fixed momenta). Here
we have stated the result in the “continuum’ form, as a
k,— + oo limit. As before, [O,({k(})] is a renormalized
variable for the continuum theory which may be defined
as a weak limit

[04({ko)]= lim ky*OM({ko}) . (56)

N-—+ oo
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The sum in Eq. (55) runs over all such renormalized scal-
ing variables, with ¢, some specified expansion
coefficients. It is obvious from the form of the expansion
that the leading term is from the variable in the sum with
the lowest dimension. We have already argued that there
will be many variables in the shell-model case which have
x, <0, so the leading term is likely to have such a nega-
tive dimension in general. The variable with the next
lowest dimension gives a subleading correction, and so
on. A simple application of the expansion is to the
asymptotic evaluation of the shell-variable moments. Us-
ing the one-point version of the generalized scaling law
Eq. (44), it easily follows that

([04({ko) e ~L 7. (57)

Now, let [0,({ko})] be the variable giving the leading
term in the expansion Eq. (55) and x, its scaling dimen-
sion. It follows at once that

(up),, ~e?k Pk, L) 7, (58)

plus corrections of subleading order as k,—+ . We
therefore see that the “multifractal scaling” numerically
observed is indeed predicted by the RG method (under
all of our assumptions). This result cannot be obtained
by dimensional analysis alone, which only gives the weak-
er result Eq. (15). It is important to note in the above
scaling law that the ‘“‘anomalous scaling” is associated
with the finite length scale L in the problem, and it leads
to divergence of the moment in the limit L — + o. The
associated exponent is a scaling dimension of [0, ({k})],
not of uf. It is also worth mentioning that there is anoth-
er RG derivation of the Eq. (58) which is more direct for
that specific relation than the one presented above [32].
It is based on an RG formulation of Barenblatt’s theory
of “intermediate asymptotics” [33,14]. That approach
presents also some novel calculational strategies at a non-
perturbative level and deserves to be pursued, but we do
not attempt it here.

Having discussed some implications of the expansion,
let us now give its proof. The argument is a simple adap-
tation of the one used to prove the operator product ex-
pansion in field theory and critical phenomena: see the
end of Sec. 12.4 in [28] or the related discussion in [34].
We are going to assume that the effective PDF of the
shell model for scale kj is near the fixed point distribu-
tion, which requires both that v be sufficiently small that
kyn<1 and also that L be sufficiently large that
kyL >>1. We will subsequently take the limit ky — + o,
so the result should be valid for the zero-viscosity limit-
ing theory. We must use the properly nondimensional-
ized variables, which we have avoided up to now:

un

ﬁnzm . (59)

We have seen that the simple power @ £ is, for n <N, a
scaling variable with scaling dimension equal to —p/3,
the canonical dimension. Introduce the generating func-
tion W [h,k] of this variable (we suppress the subscripts
N,€ on W, since they are fixed under the RG). Now, for
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a given n, iterate the RG for N —n steps to obtain
WL[h,K]=WL/zN-,,[h,K(N_n)], where differentiation of
the right-hand side in k makes one insertion in any corre-
lation function, for the L /2" ~" state, of the variable

p/3

k
o (60)

TV rag)= |

n

The use of the linearized transformations is what limits
our result to the case k,L >>1, since L/ZN_”>>kN_1
must be true for the above equation to be valid. Having
iterated down to the cutoff scale, we must now stop be-
cause # & is no longer a scaling variable. However, using
the assumption of asymptotic completeness, we may ex-
pand it into scaling variables weakly in the L /2" " state,
as

48~ c, 0N {2V ko)) . (61)

Now using the RG transformation again, but in the re-
verse direction for the generating function of the OV”s,
we see that for insertion into arbitrary correlation func-
tions for the original L state, we have the complete
(weak) equivalence

3
ky |7/

& e

—-X

ky
kN

O'M({ko}).  (62)

80~

n

Reintroducing the dimensional quantity u?, we see that
this gives
p/3

u,’,’ —Xx x
>k, a'kNaoizN)({kO] ).

ky

ky

—p/3, —p/3
EPkyP

(63)
Equation (63) is valid, under the assumptions, for the
theory with cutoff ky. However, dividing both sides of
Eq. (63) by the common factor k§’? we obtain the result
which is valid in the limit k5 — + . This is exactly the
claimed expansion result.

It is useful to note that the condition on the viscosity in
the above argument is actually that kyn =1, so we can
get a statement for theories with finite v if we allow k, to
range down only to the scale k, =7"!. We should point
out that the condition ky1 =1 is based on the presump-
tion that an effective PDF even for ky at the Kolmo-
gorov scale ky =k, is near the fixed point. This seems
plausible since we know that in the fixed point theory for
cutoff ky, the effective viscosity goes as vV ~&!2ky*/3,
and this is exactly the viscosity for which ky is the Kol-
mogorov scale wave number. Hence it seems valid to ex-
trapolate the previous results in theories with finite v
down to k, =k,. If that is the case, then we obtain some
simple results on dissipation-range scaling. Indeed, we
can introduce quantities such as ‘“generalized flatnesses”
of the dissipation-range shell variables, such as
F,=(uP(k,))., /{u(k,))2] , and the previous re-
sults imply that these should scale with Reynolds number

_ 4/3 —3x,/4+px, /8 .
Re=(k,L)"” as F,~(Re) 7 for Re>>1. It is
especially noteworthy that the exponents x, appearing
here are the same as those in the inertial-range scaling
laws. -
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C. Additive-coupling hypothesis
and correlation scaling laws

Further qualitative results can be obtained by the same
type of arguments as those above. As one example, let us
derive a prediction for scaling of two-point moment
correlations in the zero-viscosity limiting theory (or, oth-
erwise, in the inertial range for finite viscosity). The re-
sult we establish is that

(u,‘,’u,‘{, )E,L ~zp +q)/3kn——p/3k’;q/3

ke | 7%
T (k,L) "%,

(64)

in the range L ~'<<k,, <<k, ( <k,). This is similar to
the “Cates-Deutsch” scaling behavior for space correla-
tions of multifractal measures [35]. The proof is quite
simple. Employing again the nondimensionalized shell
variables, we first use the scaling law Eq. (44), iterating
N —n steps until the highest shell variable reaches the
cutoff:

(p+4q)/3

ky

k

(@5a4,),, =

(65)

Now we can use the asymptotic completeness assumption
to replace # & by its expansion in Eq. (61), retaining for
simplicity only the leading term OIEN ({2 ""ky}). Subse-
quently we can iterate by an additional n —m steps, until
the second shell variable is at the cutoff scale:

(p+4q)/3 —x_ +gq/3
(a29),, ~ | o )7
n m €,L kn km
X<O;N)({2N_mk0} )ﬁ x'>E,2_(N“’")L .

(66)

Now we can replace # § by the leading term in its expan-
sion in scaling variables O{™({2"~™k,}). We then en-
counter the product ON({2V77k)})OM({2Y~"k,}),
which is no longer a scaling variable but can itself be ex-
panded in terms of scaling variables. It is very plausible
that the leading term in this expansion (the one with the
smallest dimension) is just O (N ) ({2” "ko}). The reason
is that all the terms Wthh appear in the expansion of
O“V)( {2V "™k} )O(M( {2V ™Ky 1) are also terms which
could appear in the expansion of & 79, in view of all the
symmetrles and invariances of the theory. But the lead-
ing term in the expansion of that variable is exactly
0,¥,({2Y"™ko}). It would be something of an accident
for thlS term to have zero coefficient in the expansion of
oM 2V Tk DON({2V "™k} ). Without attempting
any rigorous proof of this “additive coupling,” let us ex-
plore its consequences as a plausible hypothesis. In that
case, we have the result
kN (p+q)/3

k

—xp+q/3

k
k

n

(@5 g),, ~

n m

X (O, ((2Y ko)) yvomy - (67)
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Now iterating the scaling law by N —m steps in the re-
verse order, we obtain

kN (p+4q)/3 kn —xp+q/3
(ﬂﬁﬁ?,,)aL"’ . X
ky x
T (o O, ({ko})) gy - (68)

Finally, returning to the dimensional shell variables, we
obtain, after canceling factors, that

=p+4q)/3 3 3 k" o
(ufu'gl )E,L~6p q kn p/ km q/ ?_.
m

Xkp P*([0, 1o ({ko}) ]y s (69)

which gives exactly the claimed Eq. (64).

D. Renormalization group
and multiplicative cascade models

The previous results show how RG, when supplement-
ed with some -additional plausible assumptions, which
may be generally true or special to the particular situa-
tion, can yield results that cannot be obtained by dimen-
sional analysis alone. In particular, the power-law
correction to the moment scaling in Eq. (58) is not pre-
dicted by DA alone. There is a traditional expectation of
such types of corrections to Kolmogorov scaling which is
based on simple cascade ansatz, which model the trans-
port of energy to small scales by random multiplicative
processes. Such types of models go back to the earliest
attempts of Kolmogorov and Obukhov to make correc-
tions to K41 which would take into account the Landau
objection [36,37]. The 1962 “log-normal model” and the
later generalizations in a wide class of “multifractal” cas-
cade models by Novikov [38], Mandelbrot [39], and oth-
ers all predict power-law corrections of the indicated
type. In fact, all of the previous derived results for our
model can be simply derived from such cascade ansatz.
Within such an ansatz, the relation like our Eq. (58) fol-
lows, with the exponent related to the random multiplier
M as —x,=log,{M”), where ) indicates expectation
with respect to the multiplier distribution (e.g., see [40]).
Furthermore, the result like Eq. (64) can also be estab-
lished on the basis of such an ansatz. Heuristically, it
may be interpreted as follows: the moments propagate
together from scale k,=L ! to the scale k,,, leading to

the factor (k,, L) *+4. and thereafter the higher-shell
moment propagates alone from scale k,, to scale k,, lead-
ing to the factor (k,/k,,) *». An analytic calculation
verifies this result. Therefore, the RG results are sub-
stantially the same as those of the simpler cascade ansatz.
The difficulty with such ansatz is that they make a too
specific model assumption about the nature of the energy
transport, e.g., they assume commonly no backward ener-
gy transfer, a completely stochastic distribution process,
etc. It is not clear how they may be made consistent with
the dynamical equations of motion. Therefore, one can-
not really be confident of the predicted form of the scal-
ing corrections. In contrast, the RG argument requires
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no model assumptions about the energy transport and is
in a framework completely compatible with the equations
of motion. It incorporates some of the same ‘“‘cascade”
ideas primarily through the assumption that there should
be negative scaling dimensions, associated to the many
relevant directions leaving the fixed point. The
justification for that goes back ultimately to the idea of
the “local cascade” in which individual steps are roughly
independent, leading to loss of information of the large
scales. However, we would argue that the RG argument,
while based on some of the same physical ideas, actually
makes less specific assumptions and therefore gives a con-
siderably better ground to the predicted relations.

V. QUANTITATIVE METHODS

A. What can be calculated?

In the final analysis, the RG methodology in tur-
bulence problems should be judged on the basis of wheth-
er it can actually yield useful computational strategies for
quantities of interest, e.g., scaling exponents. While this
has proved to be the case for many equilibrium problems,
it is essentially untested for turbulence calculation. The
main difficulty facing the application of RG to
turbulence—just as faces any other method—is the
essential strong nonlinear coupling of the problem. RG
in no way ameliorates this difficulty. However, there are
some methods which have been used in equilibrium prob-
lems of strong-coupling nature, in conjunction with RG
strategies, which have been quite successful. One of these
is numerical implementation of RG and the other is per-
turbation expansion based on a “hidden” small parame-
ter. We discuss each of these possibilities in turn,
specifically for the context of the shell model.

B. Numerical RG

The numerical application of RG to calculating scaling
exponents in equilibrium critical systems is primarily
based on the relation Eq. (40) between correlation func-
tions and linearized RG map. This is the method of
Monte Carlo renormalization group first proposed by Ma
[41] (see also [31]). In this method, a numerical algo-
rithm, such as the Metropolis method, is used to generate
an ensemble of spin configurations with the probabilities
of the equilibrium distributions. If one can fix the param-
eters of the distribution to be at the fixed point initially
(e.g., by using exact results from duality, etc.), then the
required correlations can be calculated directly. Other-
wise, the fixed-point distribution can be obtained by per-
forming the RG transformation in terms of “block spins”
directly on the generated spin configurations. Close to
the critical point several iterations are usually sufficient
to drive the ensemble distribution to the fixed point.
Once the fixed-point correlation functions are known, the
linearized RG map is obtained by inversion and both the
scaling variables and exponents obtained as its eigenvec-
tors and eigenvalues.

The same type of strategy might be applied in the case
of turbulence. A basic difficulty is how to calculate the
correlation functions. Unfortunately, the only way it is
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really known how to obtain them is by direct numerical
simulation of the dynamics. In that case, it is obviously
much easier to calculate the exponents directly from a
log-log plot of the momenta {uf) versus k,. The
method of calculating two-point correlations of a large
class of operators, inverting to obtain the RG map, and
then diagonalizing is obviously much less efficient (and
probably less accurate). As emphasized by Kraichnan
[11], a statistical-mechanics method which requires more
work than direct simulation is obviously not the one we
want. The success of a numerical RG method depends
partly upon developing a good method to obtain the
correlation functions, short of direct simulation of the dy-
namics. One possibility here might use the existence of
the path-integral representation Eq. (16). There are al-
ready approaches to quantum Monte Carlo based upon
applying the Monte Carlo methods, originally developed
for equilibrium Gibbs distributions described by a Hamil-
tonian, to the Feynman path-integral representation of
quantum wave functions for a specified classical Lagrang-
ian (e.g., [42] and references therein). Such methods
might be applied to the MSR path-integral representa-
tion. Another possibility is based upon the “decimation
theory” ideas of Kraichnan [11]. In this approach, the
number of degrees of freedom in the exact dynamics is re-
duced, based upon statistical redundancy of modes, and
the eliminated degrees of freedom replaced by suitable
Langevin forces subject to imposed constraints from the
exact dynamics. In the case of the shell model, such a
strategy is not obviously useful because it is already
strongly ‘“decimated.” (In fact, we have been looking at
the shell dynamics as a model problem, but, since they
are sufficiently simple for computer simulation, they
might instead be regarded as the solution. A strongly de-
cimated version of the Navier-Stokes equation in a
wavelet representation might well resemble a shell model
with additional Langevin constraint forces.) However,
the correlation functions in time should have smoothness
properties which are not present in the individual realiza-
tions of the shell dynamics, which show strong temporal
intermittency. This might be made the basis of a decima-
tion approach in time. Still, a basic objection to all these
ideas is the following: Why not just calculate the mo-
ments directly? One answer is that the RG method gives
more information, e.g., the scaling variables themselves.
Another interesting possibility of the RG method is
based upon finding the “fixed point subgrid model.” This
is certainly likely to be a very complicated dynamical ob-
ject, with all types of higher-order nonlinearities, non-
Markovian features, etc. However, it incorporates infor-
mation about the buildup of intermittency in infinitely
many cascade steps. If it can somehow be found, and
then simulated, information could be obtained in a rela-
tively small-scale computation that would otherwise only
be obtainable from a simulation at extremely high Rey-
nolds number.

C. Perturbation theory

The second possibility for quantitative calculation is
perturbation expansion. Since the model of interest is
strongly coupled, this strategy depends upon inventing a
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sequence of models, depending upon a parameter, which
interpolate between the original strongly coupled model
and a soluble limit. Then, an expansion can be made in
the interpolation parameter around the soluble limit and
the results finally extrapolated to the original strongly
coupled case. Examples of this for equilibrium theory are
the € and 1/N expansions. These methods have proved
especially useful for clarifying the qualitative nature of
phase diagrams, but they have also proved in many cases
to give accurate quantitative results, especially when im-
proved by resummation techniques.

To apply this method in turbulence problems requires
firstly the invention of suitable interpolation problems.
As emphasized by Kraichnan, the intermittency correc-
tions depend crucially upon the exact form of the
Navier-Stokes nonlinearity, so that any approach to cal-
culating the scaling exponents must correctly treat the
nonlinearity [43]. The same type of arguments apply to
the shell models. This is an inherent problem for the per-
turbation method since the interpolation problems neces-
sarily modify the nonlinearity. The most natural ap-
proach may be to expand around the direct interaction
approximation (DIA) solution. The DIA equations are
derived in an N — + o limit from the random coupling
model (RCM), which employs N copies of the original
problem coupled together in collective coordinates with
random dynamical phases [44]. N=1 is the original
problem itself. (Another large-N approach to the DIA is
a “spherical model” based upon using large-spin repre-
sentations of the rotation group [45].) Since the interac-
tion strengths in the RCM are the same as for the origi-
nal problem, only with random phases, some important
features of the nonlinearity of the original problem are
preserved in the limit. The most straightforward thing to
attempt is therefore to expand in 1/N around the DIA
solution, either for the original RCM or the spherical
model. Some other ideas for expansion around the DIA
are discussed in [46].

The other main method used in critical phenomena,
the € expansion, has already been attempted for tur-
bulence [2,3]. However, this method has a number of
severe problems. The € expansion which is presently
developed is for a model of power-law randomly stirred
fluids, in which the force is over the whole inertial range.
Even for ¢e=4, where a % law is dimensionally predicted,
one is not really studying turbulence but only a “tur-
bulencelike” system. However, the method has other
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serious difficulties, which we hope to discuss elsewhere at
more length. For one thing, the RG for these models
turns out not to be systematic, even for small €, because
of an infinite number of marginal variables. This may be
connected with the presence of an infinite number of fixed
points, since the variables in question are unlikely to get
loop corrections to the marginal scaling. Also, it is very
likely that an important crossover occurs in those models
at €=3, so it is then useless to extrapolate from small € to
€=4. In the shell models, there is a further problem,
since the RG recursion is modified —due to the fact that
eddy viscosity is a strictly cutoff scale effect—and the
problem is not weakly coupled even for small €. In our
opinion, the present € expansion is not likely to be very
useful in turbulence theory.

Whatever expansion technique might be devised, RG is
an important tool in systematically improving the pertur-
bation expansion. Despite the ultimate triviality of the
fixed-point condition Eq. (19), one should appreciate that
it is nonperturbative in origin, and its consequences, like
the power-law scaling Eq. (58), need not be true order by
order in the perturbation expansion. Indeed, the way
power laws typically appear in perturbation expansion is
as logarithmic divergences, and the RG obtains power
laws perturbatively by performing an infinite resumma-
tion of terms at all orders in the naive expansion, the so-
called leading-logarithm series (e.g., see [47], Sec. 7.6).
Therefore, the RG invariance and fixed-point condition
are very important tools especially in perturbation ap-
proaches, since they are a way of incorporating exact
nonperturbative results which are otherwise missed by
the expansions.
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